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FOREWORD 
 
 
 The work reported herein was performed at the Indian Head Division, Naval Surface Warfare 
Center (NSWC). The first part of this paper, which concerns the derivation of posterior marginal 
distributions for a prior consisting of a mixture of ordered Dirichlet distributions, was presented on 6 
November 1982 at the Virginia Polytechnic and State University symposium, “Reflections on Bayesian 
Approaches in Operations Research, Probability, and Statistics,” in Blacksburg, VA. At the symposium 
the author learned that the posterior marginals for an ordered Dirichlet prior had been published a year 
earlier by Damon Disch (1981). In November 1984 the author revised the original paper and included 
recursive relationships that enable the posterior marginal distributions derived earlier to be calculated. 
These results were not published, but they have been applied in an interactive computer code MBR 
written by the author and Mr. Patrick O’Neal at NSWC (White Oak Laboratory) circa 1988. This code 
was recently revised and rewritten in Mathcad and published as IHTR 2323. 
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INTRODUCTION 
 
 

This paper concerns the problem commonly associated with bioassay, but there are broader areas 
of application such as accelerated life testing, sensitivity testing, and military damage analysis. We will 
be concerned with items subjected to differing levels of stress and with the problem of estimating the 
probabilities of failure associated with the stress levels. Emphasis is placed on the attainment of interval 
estimates. The approach we take is Bayesian and the model we develop is an extension of that published 
by Ramsey (l972), whose work was brought to the attention of the author by Professor N. D. 
Singpurwalla of George Washington University. 

 
The number of failures y at the ith stress level S is taken to be binomially distributed 

 
 ~ ( , )i iy b n p  (1) 

 
where in  is the number of tests and ip is the unknown (random) probability of failure. We let the total 
number of stresses involved be M. It is assumed that the unknown p values underlying the tests satisfy 
the same (complete) ordering restrictions as the stresses. These we are free to write as  
 

 1 2 MS S S< < <L  (2) 
and  

 1 2 Mp p p< < <L  . (3) 
 

In the discussion that follows we develop a joint prior for the p values that is consistent with the 
ordering (3). This prior is related to that proposed by Ramsey (l972), but is considerably less restrictive. 
Specification of the prior is achieved by specifying its marginals, which can be accomplished in a 
variety of ways. The method currently used by the author is to obtain the user’s judgments as to the 
modes (most likely values) and 5th and 95th percentiles (uncertainty limits) at each of the stress values. 
Usually these can be obtained in the forms of modal and limits curves spanning the stress values of 
interest. The complete marginals can then be supplied by the statistician in a manner that is consistent 
with the user’s choices. As will be shown, the marginals must satisfy certain conditions that amount to 
very natural restrictions on the forms of the marginal distribution functions. 

 
In the final sections we develop expressions for the posterior marginals. From these expressions, 

the user can obtain new values of the marginal modes and percentiles as modified by the data.  
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CONSTRUCTION OF THE PRIOR 
 
 

Ramsey’s prior was a form of the ordered M-variate Dirichlet distribution, which, following Wilks 
(l962, p. l82), we can write generally as  

 

 
1

11 1,
1 2 1

1 1, 1

( )
( ) ( ) ,

( ) ( )
ij

M
j M j

j M i i
j M j i

g p p p p p αΓ α α

Γ α Γ α

+
−+

−
+ =

+ +
< < < = −∏

L
L

L
 (4) 

 
where 0 1 2 10 1M Mp p p p p +≡ < < < < < ≡L  and 0ijα >  for all i,j.  Our prior will consist of a 
mixture, or convex combination, of (4), viz., 

 

 
1

( ) ( ) ,
J

j
j

g p g p
=

≡ ∑  (5) 

 
where 0jφ > , j=1, 2, …, J, and 1j

j
φ =∑ .1 

Now, we want to assign values to the parameters { }ijα  in (4) and (5) by choosing the shapes of the 
M marginals of ( )g p . These we require to be of the form 

 

 
1

( ) ( ) , 1, 2,..., ,
J

i j j i
j

g p g p i Mφ
=

≡ =∑  (6) 

 
where    

 11( )
( ) (1 ) .

( ) ( )
ijij bij ij a

j i i i
ij ij

a b
g p p p

a b
Γ

Γ Γ
−−+

≡ −  (7) 

 
Hence, our joint prior consists of a mixture of ordered M-variate Dirichlet distributions with marginals 
that are mixtures of betas. So that (6) and (7) are bounded, we will require 

 
 1 and 1.ij ija b> >  (8) 
 

                                                 
      1This choice was motivated by Mazzuchi’s success (Mazzuchi and Singpurwalla, l98l) in representing the moments of 
the posterior marginals for (4), i.e., Ramsey’s prior, and the need for a richer class of priors. 
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For the above forms to hold, Wilks (l962, theorem 7.7.6) gives the following conditions 

 
1

j

i

ija α
=

=∑ l
l

 (9) 

and  

 
1

1
j

M

ij
i

b α
+

= +
= ∑ l
l

 (10) 

 
for i = 1,2,..., M and j = 1,2,..., J. From (9) we find  

 

 

1 1

2 2 1

1,

j j

j j j

Mj Mj M j

a

a a

a a

α

α

α −

=

= −

= −
M

 (11) 

 
Hence 1 2, ,...,j j M jα α α  are fully determined by 1 2, ,...,j j M ja a a . And from (10) we find 
 

 1,M j M jbα + =  (12) 
 

and  , 1, 2,..., .ij Mj Mj ijb b a a i M= + − =  (13) 
 

The latter result is found by substituting (11) and (12) into (10). Also, within the additive constant, 
,M jb the b parameters are determined by the a parameters. From these results we find that the beta 

densities of (7) are necessarily of the form 
 

 1 1( ) (1 )ij M j M j ija b a a
j i iig p p p− + − −

∝ − . (14) 
 

It is convenient to reparameterize (14) in terms of its mode ijp∗  and precision index β , which are 
expressed as  

 
1ij

ij
j

p
α

β
∗ −
=  (15) 

 
 2 ,j M j M jb aβ = + −  (16) 
 

from (8). Substituting these into (14), we obtain  
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 1( ) (1 )
j

ij ijp p
j i ig p p p

β∗ ∗− 
∝ − 

 
. (17) 

 
Expression of the Dirichlet parameters in terms of jβ  and ijp∗  yields 

 
 1, , 1 1( )ij j ij i j i M ip pα β δ δ∗ ∗

− += − + +  (18) 
 

for i = 1,2,..., M+1 and j = 1,2..., J. Here, as above, we have defined 0 0jp∗ ≡  and 1, 1.M jp∗ + ≡  Note that 
the presence of the Kronecker δ ’s in (18) makes 1,M jα +  and 1 jα depart from the values assigned by 
Ramsey, which appear to be in error (cf. p. 844). 

 
Thus, by the above construction we are able to specify a suitable form for the joint prior if we are 

able to represent our marginal priors by functions of the form 
 

 ( ) 11

1
( ) 1, (1 ) 1 (1 )

j
ij ij

J p p
i j j ij j ij i

j
g p B p p p p

β
φ β β

∗ ∗−− ∗ ∗

=

 
= + − + − 

 
∑  (19) 

 

where     1 ( )( , )
( ) ( )

u vB u v
u v

Γ
Γ Γ

− +
≡  , and i = 1,2,..., M. 

 
We now show a method for choosing the parameters of (19) that will permit the representation of a wide 
class of marginal distributions. 

Assignment Of Parameters 

The assignment problem can be stated as follows. We wish to assign values to the parameters 

jφ , jβ , j = 1,2,..., J and 1ip∗ , 2ip∗ ,…, iJp∗ , i = 1,2,…, M in such a manner that the constraints jφ > 0, 

jβ > 0, 1, , 1 1( )ij j ij i j i M ip pα β δ δ∗ ∗
− += − + + > 0, j = 1,2,…, J, i = 1,2,…, M+1 and 1jφ =∑  are satisfied 

and ( )ig p , i = 1,2,…,M, are close representations of the actual prior marginals. In the following let us 

denote the densities and distribution functions of the actual prior marginals by ( )⋅∗
ig  and ( )⋅∗

iG , 
respectively. It is assumed that such functions are available upon consultation with the user as described 
earlier. 
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It is noted that choices of the jφ and jβ parameters affect all of the marginals represented by (19) 

simultaneously, but that sets of ijp∗  parameters may be independently assigned. This and the recognition 

that distributions may be regarded as describing the concentrations or densities of units of probability 

suggests the following assignment plan. For j = 1,2, …, J, let 
 

 1/j Jφ =  (20) 

and jβ β=  (21) 
 
where β  is a large number (e.g., 500 or 1000). Then for the ith marginal we choose the ijp∗ , j = 1,2, ..., 

J as percentiles of ( )⋅∗
ig  as follows: 

 
 ( ) ( 1)i ijG p j J∗ ∗ = + . (22) 

 

This process is repeated for all marginals ( )⋅∗
ig , i = 1,2,…, M. The interval between adjacent ijp∗ values 

corresponds to equal and constant units of probability. 
 

This method of approximating the desired distribution shapes is very similar to that used in pattern 
recognition theory and found in the theory of Parzen estimators (see, e.g., Fukunaga, l972, p. 166). By 
increasing the value of J, the accuracy of the approximation can be increased arbitrarily. The size of 
the β parameter, which controls the width of the beta “kernels” (i.e., components of the sum), should be 
chosen so that all kernels overlap to some extent (see Meisel, l972, p. l07). In the author’s experience 
reasonable choices for J may be less than 50.  

 
A review of the constraint requirements stated at the beginning of this section shows that the only 

constraints requiring our attention under this plan are those on the ijα ’s, namely 

1, , 1 1( ) 0ij j ij i j i M ip pα β δ δ∗ ∗
− += − + + > , 1, 2, ..., 1i M= + , 1, 2, ...,j J= . It is of interest to see how these 

affect the shapes of the marginals that can be represented by (19). 
 
An obvious set of sufficient constraint conditions is given by 

  
 1 , 1, 2, ..., 1, 1, 2, ...,i j ijp p i M j J∗ ∗

− < = + = . (23) 
  
Now, proceeding pairwise, the plan requires that 1 1,( ) ( ) /( 1)i i j i ijG p G p j J∗ ∗ ∗ ∗

− − = = = , which is illustrated 

in Figure 1. Hence, the constraint 1i j ijp p∗ ∗
− <  implies 
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 { }1 1,( ) ( ) , and , .i i i j ijG p G p p p p∗ ∗ ∗ ∗
− −> ∈  (24) 

 
This may be equivalently stated as  

 

 { }1 1,( ) ( ) , , .i i i j ijPr p p Pr p p p p p∗ ∗
− −> < − ∈  (25) 

 
 

 

Figure 1.  Illustration of Modes Assignments 
 

 
By considering other values of j while allowing ,J β →∞ , we can extend the region of validity of (24) 
and (25) to the entire unit interval (0,1). Thus, the full set of constraints given in (23) suggests the 
following restrictions on the marginals that can be approximated by (19): 
 
 1 2( ) ( ) ( ) for all  (0,1) ,MG p G p G p p∗ ∗ ∗> > > ∈L  (26) 

  
which is equivalent to 

 
 1 2Pr( ) Pr( ) Pr( ),  for all (0,1).Mp p p p p p p> < > < < > ∈L  (27) 

 
Both relations (26) and (27) express conditions that must be satisfied by the prior marginals. The latter, 
which are referred to as the conditions for stochastic ordering, have an intuitively meaningful 
interpretation. 

1,i jp∗−  ijp∗
 

/( 1)j J +  
Gi-1(.) Gi(.) 
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Other Features Of The Prior 

Interesting properties of Ramsey’s prior that were listed in his paper (l972) appear to carry over to 
the mixed prior. The conditional distribution of ip given 1ip − and 1ip + is a mixture of translated betas on 
the interval 1 1( , )i ip p− + . And in the limit as J →∞  and ,β →∞  ( )g p  can be written as  
 
 1 2 1 3 2 1( ) ( ) ( | ) ( | ) ( | ) ,M Mg p g p g p p g p p g p p −= L  (28) 
 
where the conditionals are sums of translated betas respectively over 1 2( ,1), ( ,1), ...,p p 1( ,1)Mp −  (also 
see Kraft and Van Eeden, l964). 
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THE POSTERIOR DISTRIBUTION 
 
 

Since the data are assumed to be binomially distributed and acquired independently, the likelihood 
function is 

 

 
1

( | ) (1 )i i i
M

yi n y
ii

ii

n
L p y p p

y
−

=

 
= − 

 
∏  (29)  

 
Hence, the joint posterior density is written as 

 
 ( | ) ( | ) ( )f p y L p y g p∝ , (30) 
 
where ( )g p is obtained from (6). Substituting this, we get 

 

 1, 1 1
1

1 1
( | ) (1 ) (1 ) ( )M j iji i

MJ
y n

j j M i i ii
j i

f p y K p p p p pα αφ + − −
−

= =

  ∝ − − − 
  

∑ ∏ , (31) 

 
 

where 1 1,

1 1,

( )
( ) ( )

j M j
j

j M j
K

Γ α α

Γ α Γ α
+

+

+ +
=

L

L
 .  (32) 

 
 

The marginals of the posterior distribution are thus obtained by performing the integrations indicated in 
 

 ( ) }{
11

1
0

1
0

1
1 1

21

⋅∝ ∫∫∫∫∑
−

+−
= Mi p

M
p

i

pp

ij

J

j
j dpdpdpdpKypf LLφ  (33) 

 
where {·} is the bracketed term in (31) above. 

 
Integration of (33) can be achieved by expanding the various binomial terms in a systematic 

fashion. The process has been described by Disch (1981) in considerable detail (for J = 1). Using a 
notation similar to that of Disch, the result, for i = 1, 2, …, M, can be expressed as  
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11

1

1 1

1
1

1,
1 0 0 1

( | ) ( 1) ( , )
i

i

i

nn iJ
r

j j rj r r j
rj r

n
f p y K Bλφ ξ λ α

−
−

−

−
−

+
= = = =

 
∝ − + 

 
∑ ∑ ∑ ∏

l l

L
l

 

  

  
1

1 11

1

1 11

0 0 1
( 1) ( , )

i M
ij i ij ii

i M

y y M
s

sj s sj i i
ss i

y
B p qξ λ η ΛΛ η Λ α

+
− +−

+

+ − + −−

= = = +

 
× − + 

 
∑ ∑ ∏

l l

L
l

 (34) 

 
where  1i iq p≡ − , k k kn n y≡ −  
 

 
1
( )

r

rj k kj
k

yξ α
=

≡ +∑ , 
1

r

r k
k

λ
=

≡ ∑ l , 0 0λ ≡  

 

 1,( )
M

rj k k j
k s

nη α +
=

≡ +∑ , 
M

s k
k s

Λ
=

≡ ∑ l , 1 0MΛ + ≡  

  
and the 1B− function was defined earlier in connection with (19). Clearly, from (34) one can easily 
obtain forms for the M posterior marginal distribution functions in terms of incomplete beta functions. 

Interpolation and Extrapolation 

Expression (34) is readily extended to non-observational stresses (i.e., stresses for which no data 
exist) by setting the associated values of in  and iy  to zero. In this way we can interpolate or extrapolate 
the forms of the posterior marginals at stress values other than those at which data were collected 
provided the prior marginals at these points have been specified. 

Computation of the Posterior Density 

In this section we develop a recursive procedure by which (34) can be rapidly calculated. 
Disch (l98l) explored approximate methods of computation after pointing out the profound inefficiency 
of straightforward, brute-force approaches. Antoniak (1974) reported similar difficulties. 
 

Equation (34) may be viewed as the sum, over j, of the product of two sums, the first being a sum 
over all 1 2 1( 1)-tuples ( , ,..., )ii −− l l l and the second a sum over all ( )-tuples M i−  1 2( , ,..., )i i M+ +l l l . A 
useful alternative representation involves the summations in which the indices 1 2 1, ,..., i−l l l  and 

1 2, ,...,i i M+ +l l l  are constrained. We then write (34) as  
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1 11 1

1 0 0
( | ) ( 1) ( , , ) ( 1) ( , , )

i i
ij ij

n yJ k kk k
i j ij p qi i

j k k
f p y K C i j k p C i j k qξ η

φ

≤ ≥
− + ′+ − + −′

′= = =

  
  ′∝ − −  
  
  

∑ ∑ ∑  (35) 

 
 

where  
( )
( )

11

1 1

1

0 0 1
( , , )

i
r

i r

nn i rjr
p

r rjr

n
C i j k λ

λ

ξ

ζ

−

−

−

= = =

 
≡  

 
∑ ∑ ∏
l l

L
l

 (36) 

 
subject to the constraint 1i kλ − = , and  
 

  
( )
( )

1

1 0 0 1
( , , )

i M
s

i M s

y y M sjs
q

s sjs

y
C i j k Λ

Λ

η

ν

+

+ = = =

 
′ ≡  

 
∑ ∑ ∏

l l

L
l

  (37) 

 
subject to the constraint 1i kΛ + ′= . Here, we have made use of Pochhammer’s symbol 
 
 ( ) ( )0( ) ( ) ( 1) ( 1), 1kz z k z z z z k zΓ Γ≡ + = + + − =L  , 
 
where k is an integer, and we have defined 
 
 
 1,rj rj r jζ ξ α +≡ + , rj sj sjν η α≡ + , 
 

1

1
1

i

ri
r

n n
−

≤
−

=
≡ ∑ , 1

1

M

si
s i

y y≥
+

= +
≡ ∑ , 

 

and  
1

1

11 1

( ) ( ) ( ) ( )
( ) ( )

i M
rj r j sj sj

ij j
rj r j sj sjr s i

K K
Γ ξ Γ α Γ η Γ α

Γ ξ α Γ η α

−
+

+= = +

=
+ +∏ ∏  . 

 
 
As a consequence of (36) and (37), we find (1, ,0) ( , ,0) 1p qC j C M j= = . 
 

The simplification of equations (36) and (37) can be effected by making index transformations 
which permit the factoring of the summands through the summations. We first examine equation (36). 
Consider the 1-to-1 and onto transformation of summation indices from the set 1 2 1, ,..., i−l l l  to the set 
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1 2 1, ,..., iλ λ λ −  with transformation relations 1r r rλ λ −= −l  , 01,2,..., 1, 0r i λ= − = . Under these 
transformations (36) can be expressed as 

 

  
22 3

2 1 3 2 2

min( , ) min( , )

max( ,0) max( ,0)
( , , )

ii i

i i i i i

k n n

p
k n n

C i j k
λ

λ λ λ

≤ ≤
−− −

− − − − −= − = −
= ∑ ∑ L  

 

 
( )
( )

2 1

1 2 2

min( , ) 1

1max( ,0) 1

r

r

n i rjr

r r rjn r

nλ
λ

λ λ λ

ξ

λ λ ζ

≤ −

−= − =

 
 − 

∑ ∏  , (38) 

 
 
where 1i kλ − =  and the summation limits arise from the constraints 
 
 1r r r rnλ λ λ−− ≤ ≤  
 
 0rλ ≥  
 
 r rnλ ≤≤  . 
 
By factoring out the product terms, we obtain 
 

  
( )
( )

2

2 1

min( , )
1, 1

21, max( ,0)
( , , )

i

i i

k n
i j ik

p
ii j k nk

n
C i j k

k
λ

ξ

λζ

≤
−

− −

− −

−− = −

 
=  − 

∑  

 

 
( )
( )

2 3
2

3 2 22

min( , )
2, 2

2 32, max( ,0)

i i
i

i i ii

n
i j i

i ii j n

n
λ

λ

λ λλ

ξ

λ λζ

≤
− −

−

− − −−

− −

− −− = −

 
×  − 

∑  

 
  

 
( )
( )

( )
( )

2 1
2 1

1 2 22 1

min( , )
2, 1,2 1

2 1 12, 1,max( ,0)

n
j j

j jn

n n
λ

λ λ

λ λλ λ

ξ ξ

λ λ λζ ζ

≤

= −

   
× ×    −   

∑L  (39) 

 
 
By inspection of (39), we find the following recursive relationship between the Cp coefficients: 
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( )
( )

2

1

min( , )
1, 1

1, max( ,0)
( , , ) ( 1, , )

i

i

k n
i j ik

p p
i j r k nk

n
C i j k C i j r

k r

ξ

ζ

≤
−

−

− −

− = −

 
= − − 

∑ , 
1

0,1, ...,
i

k n
−

≤= , 3, ...,i M=  

 

 
( )
( )

1, 1

1,
(2, , )

j k
p

j k

n
C j k

k

ξ

ζ

 
=  

 
 , 

1
0,1, ...,k n≤= , (40) 

 
(1, , ) 1pC j k =  , 0k =  

 
 
Recursive relationships for the Cq coefficients follow in a similar manner upon transformation from the 
indices 1 2, ,...,i i M+ +l l l  to the set 1 2, ,...,i i MΛ Λ Λ+ + . We obtain 
 

( )
( )

2

1

min( , )
1, 1

1, max( ,0)
( , , ) ( 1, , )

i

i

k y
i j ik

q q
i j s k yk

y
C i j k C i j s

k s

η

ν

≥
+

+

+ +

+ = −

 
= + − 

∑ ,
1

0,1, ...,
i

k y
+

≥= , 1, 2,..., 2i M= −  

 
 

 
( )
( )

,

,
( 1, , )

M j Mk
q

M j k

y
C M j k

k

η

ν

 
− =  

 
 , 0,1, ...,

M
k y≥=  (41) 

 
 

( , , ) 1qC M j k =  , 0k =  
 

 
We note from (9) that ijξ  can be expressed as  

 

 
1
( )

i

ij k kj ij i
k

y a yξ α ≤

=
≡ + = +∑  

 
where iy≤has been defined (in a manner analogous to that of in≤ ) as the sum of all ky values having k 
less than or equal to i. Similarly, from (10) we note that  
 

 1,( )
M

ij k k j ij i
k i

n b nη α ≥
+

=
≡ + = +∑ , 
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where in≥ is the sum of all kn  having k greater than or equal to i, analogously to iy≥ . Substituting these 
expressions into (35) and rearranging yields 
 
 

 
1 1 1 1

1 0 0
( | ) ( 1) ( , , ) ( 1) ( , , )

i i
ij i ij i

n yJ a y k b n kk k
i j ij p q i i

j k k
f p y K C i j k C i j k p qφ

≤ ≥
− + ≤ ≥ ′+ + − + + −′

′= = =

′∝ − −∑ ∑ ∑ . (42) 

 
 

The constant of proportionality, if desired, can be obtained from the condition 
 

 ( | ) 1i if p y dp
∞

−∞
=∫  , 

 
which holds for any value of i. 
 

Equation (42) is a particularly useful computational form for the posterior marginals. It is cast in 
terms of the marginal beta coefficients { ,ij ija b } rather than the joint distribution coefficients { ijα }. 

This avoids possible round off problems associated with the calculation of ijα in equation (18) 

involving ijp∗  differences. 
 
A computer program that uses a closely related formulation and contains an example was 

recently published as McDonald (2003). 
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